In the centre of the image the elliptical galaxy NGC5982, and to the right the spiral galaxy NGC5985. These two types of galaxies turn out to behave very differently when it comes to the extra gravity – and therefore possibly the dark matter – in their outer regions.
Credit: Bart Delsaert (www.delsaert.com)
For many years now, astronomers and physicists have been in a conflict. Is the mysterious dark matter that we observe deep in the Universe real, or is what we see the result of subtle deviations from the laws of gravity as we know them? In 2016, Dutch physicist Erik Verlinde proposed a theory of the second kind: emergent gravity. New research, published in Astronomy & Astrophysics this week, pushes the limits of dark matter observations to the unknown outer regions of galaxies, and in doing so re-evaluates several dark matter models and alternative theories of gravity. Measurements of the gravity of 259,000 isolated galaxies show a very close relation between the contributions of dark matter and those of ordinary matter, as predicted in Verlinde's theory of emergent gravity and an alternative model called Modified Newtonian Dynamics. However, the results also appear to agree with a computer simulation of the Universe that assumes that dark matter is 'real stuff'.
The new research was carried out by an international team of astronomers, led by Margot Brouwer (RUG and UvA). Further important roles were played by Kyle Oman (RUG and Durham University) and Edwin Valentijn (RUG). In 2016, Brouwer also performed a first test of Verlinde's ideas; this time, Verlinde himself also joined the research team.
Matter or gravity?
So far, dark matter has never been observed directly—hence the name. What astronomers observe in the night sky are the consequences of matter that is potentially present: bending of starlight, stars that move faster than expected, and even effects on the motion of entire galaxies. Without a doubt all of these effects are caused by gravity, but the question is: are we truly observing additional gravity, caused by invisible matter, or are the laws of gravity themselves the thing that we haven't fully understood yet?
To answer this question, the new research uses a similar method to the one used in the original test in 2016. Brouwer and her colleagues make use of an ongoing series of photographic measurements that started ten years ago: the KiloDegree Survey (KiDS), performed using ESO's VLT Survey Telescope in Chile. In these observations one measures how starlight from far away galaxies is bent by gravity on its way to our telescopes. Whereas in 2016 the measurements of such 'lens effects' only covered an area of about 180 square degrees on the night sky, in the mean time this has been extended to about 1000 square degrees—allowing the researchers to measure the distribution of gravity in around a million different galaxies.
Comparative testing
Brouwer and her colleagues selected over 259,000 isolated galaxies, for which they were able to measure the so-called 'Radial Acceleration Relation' (RAR). This RAR compares the amount of gravity expected based on the visible matter in the galaxy, to the amount of gravity that is actually present—in other words: the result shows how much 'extra' gravity there is, in addition to that due to normal matter. Until now, the amount of extra gravity had only been determined in the outer regions of galaxies by observing the motions of stars, and in a region about five times larger by measuring the rotational velocity of cold gas. Using the lensing effects of gravity, the researchers were now able to determine the RAR at gravitational strengths which were one hundred times smaller, allowing them to penetrate much deeper into the regions far outside the individual galaxies.
This made it possible to measure the extra gravity extremely precisely—but is this gravity the result of invisible dark matter, or do we need to improve our understanding of gravity itself? Author Kyle Oman indicates that the assumption of 'real stuff' at least partially appears to work: "In our research, we compare the measurements to four different theoretical models: two that assume the existence of dark matter and form the base of computer simulations of our universe, and two that modify the laws of gravity—Erik Verlinde's model of emergent gravity and the so-called 'Modified Newtonian Dynamics' or MOND. One of the two dark matter simulations, MICE, makes predictions that match our measurements very nicely. It came as a surprise to us that the other simulation, BAHAMAS, led to very different predictions. That the predictions of the two models differed at all was already surprising, since the models are so similar. But moreover, we would have expected that if a difference would show up, BAHAMAS was going to perform best. BAHAMAS is a much more detailed model than MICE, approaching our current understanding of how galaxies form in a universe with dark matter much closer. Still, MICE performs better if we compare its predictions to our measurements. In the future, based on our findings, we want to further investigate what causes the differences between the simulations."
Recommend this post and follow
Sputnik's Orbit
Posted by Chuck
No comments:
Post a Comment