Saturday, May 16, 2020

'Hot and messy' entanglement of 15 trillion atoms

MAY 15, 2020, by ICFO
https://phys.org/news/2020-05-hot-messy-entanglement-trillion-atoms.html

Artistic illustration of a cloud of atoms with pairs of particles entangled between each other, represented by the yellow-blue lines. Image credit: © ICFO Credit: ICFO

Quantum entanglement is a process by which microscopic objects like electrons or atoms lose their individuality to become better coordinated with each other. Entanglement is at the heart of quantum technologies that promise large advances in computing, communications and sensing, for example, detecting gravitational waves.

Entangled states are famously fragile: In most cases, even a tiny disturbance will undo the entanglement. For this reason, current quantum technologies take great pains to isolate the microscopic systems they work with, and typically operate at temperatures close to absolute zero. The ICFO team, in contrast, heated a collection of atoms to 450 Kelvin in a recent experiment, millions of times hotter than most atoms used for quantum technology. Moreover, the individual atoms were anything but isolated; they collided with each other every few microseconds, and each collision set their electrons spinning in random directions.

The researchers used a laser to monitor the magnetization of this hot, chaotic gas. The magnetization is caused by the spinning electrons in the atoms, and provides a way to study the effect of the collisions and to detect entanglement. What the researchers observed was an enormous number of entangled atoms—about 100 times more than ever before observed. They also saw that the entanglement is non-local—it involves atoms that are not close to each other. Between any two entangled atoms there are thousands of other atoms, many of which are entangled with still other atoms, in a giant, hot and messy entangled state.

What they also saw, as Jia Kong, first author of the study, recalls, "is that if we stop the measurement, the entanglement remains for about 1 millisecond, which means that 1000 times per second, a new batch of 15 trillion atoms is being entangled. And you must think that 1 ms is a very long time for the atoms, long enough for about 50 random collisions to occur. This clearly shows that the entanglement is not destroyed by these random events. This is maybe the most surprising result of the work."

The observation of this hot and messy entangled state paves the way for ultra-sensitive magnetic field detection. For example, in magnetoencephalography (magnetic brain imaging), a new generation of sensors uses these same hot, high-density atomic gases to detect the magnetic fields produced by brain activity. The new results show that entanglement can improve the sensitivity of this technique, which has applications in fundamental brain science and neurosurgery.

ICREA Prof. at ICFO Morgan Mitchell says, "This result is surprising, a real departure from what everyone expects of entanglement. We hope that this kind of giant entangled state will lead to better sensor performance in applications ranging from brain imaging to self-driving cars to searches for dark matter."


Recommend this post and follow Sputniks Orbit

No comments:

Post a Comment